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Abstract
The 3D microarrays, generally known as gene-sample-time microarrays, couple the
information on different time points collected by 2D microarrays that measure gene
expression levels among different samples. Their analysis is useful in several biomedi-
cal applications, likemonitoring dose or drug treatment responses of patients over time
in pharmacogenomics studies. Many statistical and data analysis tools have been used
to extract useful information. In particular, nonnegative matrix factorization (NMF),
with its natural nonnegativity constraints, has demonstrated its ability to extract from
2D microarrays relevant information on specific genes involved in the particular bio-
logical process. In this paper, we propose a newNMFmodel, namely Orthogonal Joint
Sparse NMF, to extract relevant information from 3Dmicroarrays containing the time
evolution of a 2D microarray, by adding additional constraints to enforce important
biological proprieties useful for further biological analysis. We develop multiplicative
updates rules that decrease the objective function monotonically, and compare our
approach to state-of-the-art NMF algorithms on both synthetic and real data sets.
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1 Introduction

Microarray data analysis (MDA) aims to analyze gene expression data obtained using
microarray experiments to extract information among genes, accross different con-
ditions and different samples (Moschetta et al. 2013). Depending on the goal of the
biomedical investigation, microarray experiments produce different type of data sets.
Generally, these data sets can be divided into two classes, namely 2D and 3Dmicroar-
rays. The 2Dmicroarrays are the most used: they generate gene-sample and gene-time
data sets; the first being a static set of data simultaneously recording gene expression
levels on different samples; the latter registering the evolution of gene expression
levels measured on one sample over different time points. The 3D microarrays, gen-
erally known as gene-sample-time microarrays, couple the information collected by
2D microarrays and measure gene expression levels among different samples on dif-
ferent time points. They are characteristic of some specific biomedical contexts such
as monitoring drug activities on stabilized tumor cells (Zhang 2006; Borgwardt et al.
2006).

From a mathematical point of view, gene expression levels can be represented
as vectors in a specific vector space. In this way, a 2D microarray is recorded as a
real nonnegative matrix X ∈ R

n×m+ for gene-sample microarray or Y ∈ R
n×T+ for

a gene-time microarray where n is the number of genes, m the number of samples,
and T the number of time points. A third-order tensor χ ∈ R

n×m×T+ can be used as a
multilinear algebra representation of a 3Dmicroarray. Figure 1 illustrates the structure
of a third-order gene-sample-time tensor.

To extract information from this large amount of data and to reveal the dense net-
work of knowledge embedded in this structured representation, different approaches
have been used in the literature (Kouskoumvekaki et al. 2013; Glaab et al. 2011;
Kong et al. 2011; Yang and Michailidis 2015). Among them, dimensionality reduc-
tion is a key and powerful technique (Dai et al. 2006; Boccarelli et al. 2018; Nikulin

Fig. 1 Structure of a
gene-sample-time data set time

samples
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et al. 2012). Several algebraic matrix decompositions were adopted to tackle 2D
microarrays; examples include the singular value decomposition (SVD) and principal
component analysis (PCA) (Alter et al. 2000; Wall et al. 2003), independent compo-
nent analysis (ICA) (Kong et al. 2008), network component analysis (Liao et al. 2003)
and non-negative matrix factorization (NMF) (Brunet et al. 2004; Liu et al. 2008; Li
and Ngom 2010). Among them, NMF reveals to be one of the most suitable tech-
niques for managing 2D microarrays. In fact, NMF naturally fits the non-negativity
of the microarray data providing a useful instrument for learning part-based represen-
tations (Del Buono et al. 2016). Multilinear algebra decompositions have also been
applied to reduce the dimensionality and extract features frommicroarray tensors. For
example, different gene-time microarrays were combined to construct and study an
artificial 3D microarray via the higher-order SVD (HOSVD) (Omberg et al. 2007),
the tensor version of the SVD. Multilinear ICA has been studied to classify integrated
tumor gene expression data obtained in different scenarios (Du et al. 2009) and high-
order NMF has been used to predict positive or negative responders to Interferon beta
(IFNβ) treatments (Li and Ngom 2011).

NMF is able to extract from 2D microarrays relevant information on specific genes
involved in the particular biological process (Del Buono et al. 2016). In this paper,
we propose a new NMF model, namely Orthogonal Joint Sparse NMF (OJSNMF), to
extract relevant information from 3D microarrays containing the time evolution of a
2D microarray.

The paper is organized as follows. In Sect. 2, we provide a brief introduction of the
NMF approach applied to gene sample microarrays. This allows us to motivate the
proposed OJSNMF model and its application to the layers of 3D microarrays. Sec-
tion 3 is devoted to the design of specific updates rules to tackle OJSNMF. Section 4
reports numerical results of OJSNMF applied on synthetic data sets and to the data
set from (Baranzini et al. 2004; Li and Ngom 2011) to study the response to IFNβ.
Section 5 discusses future works, addressing open problems related with the applica-
tions of the proposed algorithm to real data and to the biological interpretation of the
obtained results.

2 Orthogonal joint sparse NMF

In this section, we briefly review the use of NMF to analyze 2Dmicroarray, and present
our new proposed model to tackle 3D microarrays.

2.1 2Dmicroarray analysis: NMF approach

In 2Dmicroarrays, gene expressions are collected in a non-negativematrix X ∈ R
n×m+ ,

in which rows correspond to different genes and columns to samples (which may
represent distinct tissues, experiments, patients, conditions or time points). Hence the
(i, j)th entry of X , denoted xi j , indicates the expression level of the i th gene in the
j th sample (Brunet et al. 2004; Kim and Park 2007a). NMF approximates the data
matrix X as the product of two non-negative matrices W ∈ R

n×r+ and H ∈ R
r×m+ so
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that X ≈ W H . Each column X :, j of the matrix X is reconstructed via a non-negative
linear combination of the columns of the basis matrix W , weighted with coefficients
of the matrix H :

X :, j ≈
r∑

k=1

W:,k Hkj j = 1, . . . , m.

The r columns of the basis matrix W are calledmetagenes. Eachmetagene is a basis
vector whose entries indicate the importance of each gene in this particular metagene
(e.g.,Wik = 0means that the i th gene is not part of the kthmetagene). Thesemetagenes
are such that the subspace they generate represents the most significant information
hidden in the data. The scalar Hkj reveals the effect of the kth metagene on the j th
sample.

The number of metagenes, that is, the rank r of the factorization, is problem depen-
dent and usually specified by the user. In biomedical fields (especially in MDA),
this value is usually chosen by some empirical technique (Del Buono et al. 2016;
Brunet et al. 2004; Hutchins et al. 2008). It is worth observing that the decomposition
X ≈ W H can also be interpreted row-wise, where rows of H are metasamples.
The nonnegativity of the factors make the heatmap representations of the low-rank
approximation a useful tool for understanding the factorization results. Particularly,
heatmap reports individual values of X , W and H as colors, as illustrated in Fig. 2
where a rank-2 reduction of some data matrix is shown.

NMF is usually written as a non-linear constrained optimization problem:

min
W≥0,H≥0

D(X , W H), (1)

where D(·, ·) denotes some divergence function

D : Rn×m+ × R
n×m+ → R+,
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Fig. 2 Heatmap of a rank-2 NMF
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typically satisfying the following properties: (i) it is continuously differentiable (at
least once) in both variables, (ii) it is individually convex in W and H , and (iii) it equals
0 if and only if X = W H (Dhillon et al. 2005). One of the most used divergence in
MDA is the generalized Kullback-Leibler (KL) divergence:

K L (X , W H) =
∑

i, j

Xi j log

(
Xi j

(W H)i j

)
− Xi j + (W H)i j ,

which corresponds to the maximum likelihood estimation under independent Poisson
noise. Note that the terms i and j for which Xi j = 0 are notwell defined. An equivalent
definition of the KL divergence, which explicitly assumes 0 log(0) = 0, is

K L (X , W H) =
∑

(i, j) | Xi j >0

Xi j log

(
Xi j

(W H)i j

)
−

∑

i, j

(
Xi j − (W H)i j

)
.

Over the years, many constrained NMF problems have been proposed in the litera-
ture; see, e.g., (Cichocki et al. 2009). In the next section, we propose a new constrained
NMF model, dubbed orthogonal joint sparse NMF, that is particularly well suited to
analyze gene-sample-time 3D microarrays.

2.2 Orthogonal joint sparse NMF for 3Dmicroarray analysis

Let us denote Xt ∈ R
n×m+ , where t = 1, . . . , T represents the time, the slices of a

third-order gene-sample-time tensor χ that represent microarrays, where n denotes the
number of genes and m the number of samples. In this paper, our goal is to find factor
matrices Wt ∈ R

n×r+ and Ht ∈ R
r×m+ for each t = 1, . . . , T such that Xt ≈ Wt Ht ,

where r is the number of latent factors. Recall that the columns of Wt represent
metagenes, while each column of Ht provides the activation of these metagenes in
the corresponding column of Xt . In this section, we propose the following model to
analyze such data sets, which we refer to as orthogonal joint sparse NMF (OJSNMF):

min
Ht ≥0
Wt ≥0

T∑

t=1

(
K L(Xt , Wt Ht ) + λ‖Wt‖1 + 1

2
α

∥∥W t − Wt
∥∥2

F + 1

2
γ

∥∥∥W �
t Wt − Ir

∥∥∥
2

F

)

(2)
where λ, α and γ are positive penalty parameters, ‖·‖1 is the component-wise �1 norm
of a matrix, ‖·‖F is the Frobenius norm of a matrix and W t is defined as follows:

W t =

⎧
⎪⎨

⎪⎩

Wt+1 for t = 1,
Wt+1+Wt−1

2 for 2 ≤ t ≤ T − 1,

Wt−1 for t = T .

(3)

The objective function in (2) contains four terms. The first term is the KL divergence
between the datamatrix Xt and its approximation Wt Ht , for all time t = 1, . . . , T . The
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remaining penalization terms on the metagene matrices Wt ’s are related to biological
and operational constraints in order to improve the decomposition:

– The second term in (2), ‖Wt‖1, will increase the sparsity of Wt . In fact, the �1
norm is a well-known surrogate for the �0 norm; see, e.g., (Mairal et al. 2014).
The sparsity of Wt ensures the selection of a few genes in each metagene, which is
a desirable property when treating a huge amount of genes simultaneously (Kim
and Park 2007b). Although the orthogonality term will already enforce sparsity
of Wt , the �1 penalty will enhance this property, so that some rows of Wt could
be equal to zero, that is, some genes could be absent of all metagenes, which is
typical in practice.

– The third term in (2),
∥∥W t − Wt

∥∥2
F , ensures that the metagene matrices Wt s are

similar, and evolve smoothly over time. In fact, the matrices Wt s computed for
the different time steps are linked together by enforcing similar patterns between
different time points t of the samemetagenes. These assumptions are frequent with
time-series data in the biomedical field. In fact, a similar approach to smooth coeffi-
cients on the factorsmatriceswas used for analyzing time-series electromyography
data with a post-processing 2D-interpolation (Cheung et al. 2015). However, to
the best of our knowledge, this is the first time that this hypothesis emerges in
MDA context with an algorithmic approach that incorporates the assumption in
the minimization process as part of the objective function.

– The fourth term in (2),
∥∥W �

t Wt − Ir
∥∥2

F , promotes the columns ofWt to be orthogo-
nal. This term is in accordance to particular gene extraction techniques proposed in
the literature (Carmona-Saez et al. 2006;Kim and Park 2007a), where the extracted
metagenes have no or small overlap. In fact, the columns of a nonnegative matrix
are orthogonal if and only if the sparsity pattern of its columns are disjoint (Ding
et al. 2005; Pompili et al. 2014). Moreover, this term enforces the columns of Wt to
have their �2 norms close to one which provides some normalization and prevents
the columns of Wt to have different scales or get close to zero.

It is worth noting that the OJSNMF (2) generalizes previous NMF models: sparse
NMF (when using T = 1 and α = γ = 0) and orthogonal NMF (when using T = 1
and λ = γ = 0), and we will compare OJSNMF to these in Sect. 4.

3 Multiplicative updates for OJSNMF

In this section, we propose an algorithm based on multiplicative updates to tackle (2).
As for most NMF algorithms, we will use an alternating strategy, that is, we optimize
alternatively over the factor matrices Wt and Ht for t = 1, 2, . . . , T . Algorithm 1
provides a pseudocode to tackle (2).

Since updating (Wt , Ht ) for different t’s is the same optimization problem, we
focus in the next section to update a single pair (Wt , Ht ), that we will denote (W , H)

for simplicity.
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Algorithm 1: Alternating multiplicative updates for OJSNMF (2)

Data: Xt ∈ R
n×m+ , t = 1, . . . , T , factorization rank r , penalty parameters λ (sparsity), α

(coherence between time steps), γ (orthogonality)
Result: Wt ∈ R

n×r+ , Ht ∈ R
r×m+ , t = 1, . . . , T

begin
Choose some initial matrices Wt ∈ R

n×r+ , Ht ∈ R
r×m+ , t = 1, . . . , T

while some stopping criterion is met do
for t = 1, 2, . . . , T do

Update Ht using update from (5)
Update Wt using update from (6)

3.1 Optimizing over a single (Wt,Ht)

In this section, we consider the minimization of F(W , H) defined as

F(W , H) = K L(X , W H) + λ||W ||1 + 1

2
α

∥∥W − W
∥∥2

F + 1

2
γ

∥∥∥W �W − I

∥∥∥
2

F
. (4)

The corresponding optimization problem is non-convex in both unknowns W and H .
However, it is convex with respect to the variable H , and we can use the original
updates of Lee and Seung (2000) that are guaranteed to decrease F(W , H) for W
fixed. In fact, H only appears in the first term of F , namely, K L(X , W H), and the
updates are the following

Haj ← Haj

∑
b Wba Xbj/(W H)bj∑

b Wba
∀a, j . (5)

Note that non-increasingness of F(W , H) under the above updates is guaranteed
whether all entries of H are updated sequentially or simultaneously. The reason is
that these updates have been derived by minimizing exactly an auxiliary function for
F (a function that is equal to F at the current iterate H and larger everywhere else;
see Definition 1 below) which is separable in the entries of H –the auxiliary function
has the form

∑
a, j f (Haj ). The update we will develop for W (Theorem 1) will share

the same property. Note also that, as for all multiplicative updates, the above updates
cannot modify zero entries which may prevent them to converge to a stationary point.
A possible fix to this issue is to use a lower bound, say 10−16 for the entries of W
and H , which guarantees convergence to stationary points (Gillis and Glineur 2012;
Takahashi and Hibi 2014). We adopt this strategy for the numerical experiments in
Sect. 4.

3.1.1 Optimizing overW

The problem for W is more complicated than for H , due to the non-convex orthogo-

nality penalty term
∥∥W �W − I

∥∥2
F . We now derive multiplicative updates for W that
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are guaranteed to decrease the objective function F(W , H) for H fixed. The main
theoretical contribution of this work is to prove the following theorem.

Theorem 1 The function (4) is non increasing under the following update rule:

Wia ← Wia

√
−Bia + √

�ia

2A∗
ia

∀i, a, (6)

where

– �ia = B2
ia − 4

A∗
ia

W 2
ia

Cia,

– A∗
ia = 2

[
2α + γ

(
(W W�W )ia

Wia
+ 2

)]
,

– Bia =
∑m

j=1 Haj +λ

Wia
− 3α − 6γ ,

– Cia = −∑m
j=1 Xi j

Wia Haj
(W H)i j

− αW ia Wia.

and Wia ≥ 0. Non-increasingness is guaranteed whether these updates are performed
simultaneously (that is, all i, a are updated independently) or sequentially.

Note that for α = γ = 0, the update are not well defined since A∗
ia = 0. However,

computing the limit of the update for (α, γ ) → (0, 0), we obtain

lim
(α,γ )→(0,0)

Wia

√
−Bia + √

�ia

2A∗
ia

= Wia

√∑
j Xi j Haj/(W H)i j∑

j Haj + λ
,

so that the update becomes

Wia ← Wia

√∑
j Xi j Haj/(W H)i j∑

j Haj + λ
.

Interestingly, these updates are the same as in (Liu et al. 2003), but with a square root
factor. These updates can be used to tackle sparse NMF. In order to prove Theorem 1,
we will break up the objective function in different terms and, for each term, we will
provide an auxiliary function. The sum of these auxiliary functions will be an auxiliary
function for the original objective function and allows us to derive the multiplicative
updates from Theorem 1. For simplicity, in the following, we will denote F(W , H) =
F(W ) for H fixed, which can be written as the sum of the following terms

F(W ) = F1(W ) + F2(W ) + αF3(W ) + 1

2
αF4(W ) + γ F5(W ) + 1

2
γ F6(W )

+ 1

2
γ r + 1

2
α Tr (W W

�
),

where the functions Fi ’s are defined as follows:

– F1(W ) =
n∑

i=1

m∑
j=1

−Xi j log (W H)i j ,
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– F2(W ) = ∑n
i=1

∑r
a=1 Wia

(∑m
j=1 Haj + λ

)
,

– F3(W ) = −∑n
i=1

∑r
a=1 Wia W ia ,

– F4(W ) = Tr (W W �),
– F5(W ) = −Tr (W W �),
– F6(W ) = Tr (W W �W W �).

In fact, we have

1

2
γ

∥∥∥W �W − I

∥∥∥
2

F
= 1

2
γ Tr(W W �W W �) − γ Tr(W W �) + 1

2
γ r , and

1

2
α

∥∥W − W
∥∥2

F = 1

2
α Tr (W W �) − α Tr (W W

�
) + 1

2
α Tr (W W

�
).

Let us define formally an auxiliary function.

Definition 1 Let F : Rm×r → R : W → F(W ). Given W s ∈ R
m×r , an auxiliary

function f : (Rm×r )2 → R : (W , W s) → f (W , W s) for F(W ) at Ws is a function
which satisfies the following two conditions:

1. f (W s, W s) = F(W s), and
2. f (W , W s) ≥ F(W ) ∀W .

The aim of such an auxiliary function is to provide an upper approximation of F
that matches F at the point W s (which will be the current iterate in our algorithm).
Hence, the matrix W s+1 = argminW f (W , W s) will satisfy

F(W s+1) ≤ f (W s+1, W s) ≤ f (W s, W s) = F(W s).

Given that the minimum of f can be computed efficiently, this procedure therefore
provides us with a monotonic algorithm to minimize F : W 1 → W 2 → . . . such that
F(W s+1) ≤ F(W s) for all s ≥ 1. In the following lemmas, we provide an auxiliary
function for F by deriving an auxiliary function for each Fi (1 ≤ i ≤ 6). It has to be
noted that these auxiliary functions were chosen so that f can be minimized easily.
In fact, we designed these auxiliary functions so that the zeros of the derivative of f
satisfy an equation of the type ax4+bx2+c = 0 whose roots can be computed easily,
which in turn will allow us to minimize f exactly over the nonnegative orthant. For
the first term, we use the same auxiliary function as in (Lee and Seung 2000).

Lemma 1 (Lee and Seung (2000)) The function

f1(W , W s) = −
n∑

i=1

m∑

j=1

r∑

a=1

Xi j
W s

ia Haj∑r
b=1 W s

ib Hbj

×
(
log

(
Wia Haj

) − log

(
W s

ia Haj∑r
b=1 W s

ib Hbj

))

is an auxiliary function for F1(W ).
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(a) Parabola of f2 (b) Positive term of f3

Fig. 3 Auxiliary functions

Lemma 2 gives a convex parabola greater than the straight line, suitable to our
purposes; see Fig. 3a for an illustration.

Lemma 2 The function

f2(W , W s) =
n∑

i=1

r∑

a=1

ca

2W s
ia

W 2
ia + ca

2
W s

ia,

where ca = ∑m
j=1 Haj + λ ≥ 0, is an auxiliary function for F2(W ).

Proof The first condition for f2 to be an auxiliary function for F2 can be checked
easily. For the second condition, we have

f2(W , W s) − F2(W ) =
n∑

i

r∑

a=1

ca

2W s
ia

W 2
ia + ca

2
W s

ia − ca Wia

= 1

2

n∑

i

r∑

a=1

ca

W s
ia

(
W 2

ia − 2Wia W s
ia + (W s

ia)2
)

= 1

2

n∑

i

r∑

a=1

ca

W s
ia

(
Wia − W s

ia

)2 ≥ 0.

�
The following Lemma gives us a logarithmic auxiliary function for F3(W ).

Lemma 3 The function

f3(W , W s) =
n∑

i=1

r∑

a=1

−W ia W s
ia log

(
e

W s
ia

Wia

)

is an auxiliary function for F3(W ).
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Proof The first condition is straightforward. For the second condition, we have

f3(W , W s) − F3(W ) =
∑

i,a

−W ia W s
ia log

(
e

W s
ia

Wia

)
+ Wia W ia

=
∑

i,a

W ia W s
ia

[
− log

(
e

W s
ia

Wia

)
+ Wia

W s
ia

]

=
∑

i,a

W ia W s
ia

[
−1 − log

(
Wia

W s
ia

)
+ Wia

W s
ia

]
≥ 0.

Figure 3b displays the function −1 − log(x) + x for x ≥ 0 which is nonnegative for
x ≥ 0 because the function x − 1 is the tangent of the concave function log(x) at
x = 1, which completes the proof since Wia

W s
ia

≥ 0. �

Lemmas 4 and 5provide two four degree polynomials as auxiliary functions for F4(W )

and F5(W ), respectively

Lemma 4 The function:

f4(W , W s) =
n∑

i=1

r∑

a=1

2

(W s
ia)2

W 4
ia − 3W 2

ia + 2(W s
ia)2

is an auxiliary function for F4(W ).

Proof The first condition to prove that f4 is an auxiliary function for F4(W ) is straight-
forward. For the second condition we have

f4(W , W s) − F4(W ) =
n∑

i=1

r∑

a=1

2

(W s
ia)2

W 4
ia − 3W 2

ia + 2(W s
ia)2 − W 2

ia

=
n∑

i=1

r∑

a=1

2

(W s
ia)2

(
W 4

ia − 2W 2
ia(W s

ia)2 + (W s
ia)4

)

=
n∑

i=1

r∑

a=1

2

(W s
ia)2

(
W 2

ia − (W s
ia)2

)2 ≥ 0.

�
Lemma 5 The function

f5(W , W s) =
n∑

i=1

r∑

a=1

W 4
ia

(W s
ia)2

− 3W 2
ia + (W s

ia)2

is an auxiliary function for F5(W ).

123

Author's personal copy



F. Esposito et al.

Proof Again, the first condition can be checked easily. For the second condition, we
have

f5(W , W s) − F5(W ) =
n∑

i=1

r∑

a=1

W 4
ia

(W s
ia)2

− 3W 2
ia + (W s

ia)2 + W 2
ia

=
n∑

i=1

r∑

a=1

1

(W s
ia)2

(
W 4

ia − 2W 2
ia(W s

ia)2 + (W s
ia)4

)

=
n∑

i=1

r∑

a=1

1

(W s
ia)2

(
W 2

ia − (W s
ia)2

)2 ≥ 0.

�
Before providing the auxiliary function for F6, let us recall a result by (He et al.

2011) in the case of symmetric NMF.

Lemma 6 (He et al. 2011) Let be A ∈ R
n×n a non-negative and symmetric matrix and

W s ∈ R
n×r . Then, for all k and W ∈ R

n×r , we have

∑

i, j

Ai j W 2
ik W 2

jk ≤
∑

i

∑
j Ai j (W s

jk)
2

(W s
ik)

2 W 4
ik .

Using this lemma, we propose the last auxiliary function for F6.

Lemma 7 The function

f6(W , W s) =
∑

i,a

(W s(W s)�W s)ia

(W s)3ia
W 4

ia

is an auxiliary function for F6(W ).

Proof The first condition of an auxiliary function is easy to show:

f6(W , W ) =
∑

i, j

(W W �W )i j

W 3
i j

W 4
i j =

∑

i, j

(W W �W )i j Wi j = Tr(W W �W W �).

For the second condition, we have

F6(W ) =
∑

i, j

(W W �)
2
i j =

∑

i j

(
∑

k

Wik W jk

)2

=
∑

i j

(
∑

k

ck
Wik W jk

ck

)2

≤
∑

i j

(
∑

k

ck

(
Wik W jk

ck

)2
)

,
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where
∑

k ck = 1. The last inequality holds because of the convexity of the quadratic

function. Choosing ck = W s
ik W s

jk

(W s (W s )�)i j
, we have

F6(W ) ≤
∑

i, j,k

(W s(W s)�)i j

W s
ik W s

jk
W 2

ik W s
jk .

Thematrix A definedwith Ai j = (W s (W s )�)i j
W s

ik W s
jk

for all i, j is symmetric and non negative.

By Lemma 6, we have

F6(W ) ≤
∑

k

∑

i j

Ai j W 2
ik W 2

jk ≤
∑

i,k

∑
j Ai j (W s

jk)
2

(W s
ik)

2 W 4
ik .

�
The following corollary follows from the previous lemmas since F is a linear

combination of the Fi ’s with nonnegative coefficients.

Corollary 1 The function

f (W , W s) = f1(W , W s) + f2(W , W s) + α f3(W , W s) + 1

2
α f4(W , W s)

+ γ f5(W , W s) + 1

2
γ f6(W , W s) + 1

2
γ r + 1

2
α Tr (W W

�
)

is an auxiliary function for F(W ).

In order to prove Theorem 1, it remains to show that the minimum of f is attained
by the update given in (6).

Proof (Theorem 1) First, note that the function f (W , W s) is separable in the entries
of W , that is, there is no interaction between these variables. Hence, as for the original
MU, f (W , W s) can be optimized in each variable individually. Let us denote g(Wia)

the univariate polynomial corresponding to the terms of f (W , W s)where Wia appears
so that f (W , W s) = ∑

i,a g(Wia). Hence, we need to solveminWia≥0 g(Wia) for each
i, a. Since limWia→∞ g(Wia) = ∞, if the derivative of g has a zero at a single positive
point W ∗

ia > 0, then it will be an optimal solution of minWia≥0 g(Wia). Let us find the
points Wia such that g′(Wia) = 0, that is,

∂ f (W , W s)

∂Wia
= −

∑

j

Xi j
W s

ia Haj∑
b W s

ib Hbj

1

Wia
+ Wia

W s
ia

⎛

⎝
∑

j

Haj + λ

⎞

⎠ − αW ia W s
ia

1

Wia

+ 1

2
α

(
8

(W s
ia)2

W 3
ia − 6Wia

)
+ γ

(
4

(W s
ia)2

W 3
ia − 6Wia

)

+ 1

2
γ
4

(
W s(W s)�W s

)
ia

(W s
ia)3

W 3
ia = 0,
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which, for Wia �= 0, can be simplified to

Aia W 4
ia + Bia W 2

ia + Cia = 0 (7)

where

– Aia = 2
(W s

ia)2

[
2α + γ

(
(W s (W s )�W s )ia

W s
ia

+ 2
)]

,

– Bia =
∑m

j=1 Haj +λ

W s
ia

− 3α − 6γ , and

– Cia = −∑m
j=1 Xi j

W s
ia Haj

(W s H)i j
− αW ia W s

ia .

The polynomial (7) has four roots, but only one non-negative root, given by

W ∗
ia = Wia

√
−Bia + √

�ia

2A∗
ia

,

where �ia = B2
ia − 4AiaCia ≥ B2

ia since Cia ≤ 0 and Aia ≥ 0.
Note that if Wia = 0 then W ∗

ia = 0 hence the above update does not modify this
entry: this is the so-called zero-locking phenomenon of the multiplicative updates in
the NMF literature. In practice, the entries of W should be initialized with positive
entries hence will remain positive (although they could converge to zero). We should
observe that, even if the objective function in (4) is different from typical NMF cost
function, the zero-locking phenomenon is still applicable to the update rule (6). In fact,
it is easy to show, that the other factor of the update rule, converges to a real number
when Wia → 0:

−Bia + √
�ia

A∗
ia

→
−

(
∑

j
Haj + λ

)
+

√√√√
(

∑
j

Haj + λ

)2

+ 8γ

(
∑

j
Xi j

Haj∑
l �=a

Wil Hl j

)(
∑
l �=a

∑
b �=i

Wil Wbl Wba

)

2γ
∑
l �=a

∑
b �=i

Wil Wbl Wba
.

This prove the zero-locking phenomenon for (6) since no indeterminate form can
be achieved. �

The computational cost of the proposed algorithm is O(nmr) operations per itera-
tion. The most costly operations are matrix products on factors of order n × m, n × r
and r × m. It should be pointed out that the most NMF algorithms run in O(nmr)

hence scale linearly in the dimensions of the input matrix and the factorization rank;
in particular the multiplicative updates of (Lee and Seung 2000). Hence, although our
multiplicative updates require some additional computations, the asymptotic compu-
tational cost is the same as standardNMF algorithms hence scales similarly in practice.
For example, on the synthetic data sets presented in the next section, the original mul-
tiplicative updates of (Lee and Seung 2000) require about 6 s while OJSNMF updates
require in average 10s to perform 1000 iterations (we usedMatlab 2016a and run them
on a i-7 Core machine with a capacity of memory of 12 GB RAM).
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4 Experimental results

In this section, we perform numerical experiments on several synthetic data sets and
on a real biological data set from (Baranzini et al. 2004; Li and Ngom 2011).

4.1 Choice of the parameters

Choosing the parameters λ, α and γ related to the regularization terms in OJSNMF (2)
is crucial for the proposed model. Fine tuning parameters is a difficult issue that is
intrinsic in problems where the importance of several objectives need to be balanced.
Unfortunately, there does not exist a single procedure to manage this aspect because
choosing good parameters is application dependent. Hence, in practice, one should
rely on the users’ feedbacks to produce meaningful results.

Recall that the parameter λ regulates the degree of sparsity of the basis matri-
ces Wt ’s, α penalizes their dissimilarity, and γ regulates their orthogonality. In this
paper we use a parameter selection assuming the three regularization terms along
with the data fitting term should be given the same importance in the objective func-
tion. This is done as follows: the initial matrices W 0

t and H0
t for each slice (t =

1, . . . , T ) are used to compute the different terms in the objective function, namely

a0 = ∑T
t=1 K L(Xt , W 0

t H0
t ), b0 = ∑T

t=1

∥∥W 0
t

∥∥
1, c0 = 1

2

∑T
t=1

∥∥W 0
t − W t

∥∥2
F and

d0 = 1
2

∑T
t=1

∥∥(W 0
t )�W 0

t − Ir
∥∥2

F . Then, the parameters are chosen so that each term
in the objective function is equal to a0, that is, λ = a0

b0
, α = a0

c0
, and γ = a0

d0
. These

values λ, α and γ are used during all the minimization procedure.
Note that a similar strategy can be used to balance differently the importance

between the different terms in the objective function. In fact, the values of these
parameters is user dependent as it relates to some information which could be in prin-
ciple provided by the domain expert or connected to some a priori knowledge about
the specific data set. These parameters could also be tuned during the optimization
process in order to achieve some degree of sparsity (λ), orthogonality (γ ) and coher-
ence between basis matrices Wt s (α). For simplicity, we use in this paper the simple
approach outlined above.

4.2 Comparison with other methods

The proposed algorithm is compared in terms of its global behavior and performances
with other NMF algorithms based on the KL divergence:

– the baseline method proposed in (Lee and Seung 2000), namelyMU, which solves
problem (2) with λ = α = γ = 0. This means that there is no coupling between
the variables Wt for t = 1, . . . , T , hence this is equivalent to solve T independent
NMF problems.

– the orthogonal NMF algorithm presented in (Li et al. 2010) which we refer to as
NMFOS-KL. This method solves

∑
t K L(Xt , Wt Ht ) + γ K L(I , W �

t Wt ) whose
second term is used to make the matrices Wt close to orthogonal.
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– the sparse NMF algorithm proposed in (Liu et al. 2003; Esposito et al. 2017),
which we refer to as sparse-NMF and solves (2) with α = γ = 0. As for the
original MU, this means that there is no coupling between the variables Wt .

To illustrate the flexibility of our approach and perform a meaningful comparison
with the other algorithms, we compare MUwith OJSNMFwith parameters λ = 0 and
α = γ = 10−5, NMFOS-KL with OJSNMF with parameters λ = α = 0, and with
sparse-NMF with OJSNMF with parameters α = γ = 10−5. For NMFOS-KL and
sparse-NMF, we use the same penalty parameter as OJSNMF.

It should be noted that we have not included a comparison with tensor decomposi-
tions. The reason is that our model has additional constraints that are usually not taken
into account altogether in standard tensor-based approaches. In fact, we believe that
standard tensor methods are not suitable for our purpose. In particular, (nonnegative)
CPD/PARAFAC would not be appropriate because the basis vectors corresponding to
the time dimension would only allow to scale metagenes hence a gene present in a
metagene would have to be active in all time steps, while imposing orthogonality on
the basis vectors conrresponding to metagene is also not standard (we are not aware
of a tensor method taking nonnegativity and orthogonality constraints into account).
Also, higher-order/multilnear SVD would not be (easily) interpretable and is mostly
used for compression purposes. Instead, we adopted a common comparison approach
used in the literature, as for instance adopted in (Farias et al. 2016): we have considered
our model as T NMF problems with flexible couplings, this allows to meaningfully
comparing to the MU applied to the unfolded tensor X ∈ R

n×(m·T ). In other words,
we apply MU on the augmented matrix [X1X2 . . . XT ] so that it is approximated by
W [H1H2 . . . HT ] which explicitly imposes that all Wt s are equal to W . We will refer
to this technique as MU-unfolding and it is equivalent to the OJSNMF model with
λ = γ = 0 and α very large.

4.3 Quality measures

In order to evaluate the solutions generated by the different algorithms, we will use
the following measures averaged over each slice:

– Relative approximation error: the last value of the relative objective function of
the KL-divergence scaled appropriately:

Error =
∑

i j Xi j log
(

Xi j
(W H)i j

)
− Xi j + (W H)i j

∑
i j Xi j log

(
Xi j

) .

– Two sparsity measures for the Wt s:

(i) the one proposed by Hoyer (Hoyer et al. 2004) which estimate the sparsity of
a vector x ∈ R

n as

sparsness(x) =
√

n − ‖x‖1‖x‖2√
n − 1

,
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(ii) the proportion of the elements smaller than 10−3 times the maximal value in
the corresponding column.

– Relative distance between a slice Wt and its local average W t , that is,∥∥W t − Wt
∥∥

F /
∥∥W t

∥∥
F .

– Relative orthogonality measure:
∥∥W �

t Wt − Ir
∥∥

F /
√

r since ‖Ir‖F = √
r .

4.4 Synthetic data sets

We first perform experiments on synthetic data sets to investigate the performance of
the proposed algorithm. The data sets used for the analysis are constructed imposing
following the OJSNMF model. Each slice is the product of W true

t ∈ R
90×7 and

Htrue
t ∈ R

7×30 that are randomly generated as follows.
The matrix W true

t is the same for each t = 1, . . . , T . It is obtained as a normally
distributed perturbation of a normalized row monomial matrix1 Wmono mixed with
an uniform random noise matrix. In summary, each slice Wt is generated randomly
around the monomial matrix Wmono hence all slices are close to one another, not just
consecutive slices.

This choice agrees with the theoretical situation described in Sect. 2.2. The entries
of Htrue

t are randomly generated from the standard uniform distribution in the interval
[0,1]. The pseudo code 2 details the dataset generation inMatlab notation.We generate
100 such data sets.

Algorithm 2: Construction of the Synthetic Data Set
Data: Set the parameters of the normal and uniform distribution σ1 = 0.05, μ = 1, σ2 = 0.01,

compute the row monomial matrix Wmono ∈ R
90×7+ normalized by columns.

Result: W true
t ∈ R

90×7+ and Htrue
t ∈ R

7×30+ for t = 1, . . . , 5
begin

for t = 1, 2, . . . , 5 do
A1t = randn(90, 7);
A2t = rand(90, 7);
W true

t = Wmono. ∗ (μ + σ1 ∗ A1t ) + σ2 ∗ A2t ;
Htrue

t = randn(7, 30);

To initialize the different algorithms, we use the same initial matrices randomly
generated using the uniform distribution to which we applied one iteration of the
MU; this allows the initial matrices to be scaled well compared to the data Xt hence
make the choice of the parameter described in Sect. 4.1 meaningful. Note that for the
considered 100 synthetic data sets, the average values of the parameters are λ = 2.31,
α = 203.87 and γ = 110.13.

Figure 4 shows the evolution of the average relative error for the different algo-
rithms. Quite naturally, OJSNMF decreases the relative error slower than MU and
converges to a higher value (except when only the sparsity parameter of OJSNMF

1 A monomial matrix has exactly one non-zero element in each row
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Fig. 4 Comparisons between the average relative objective function values over the 100 data sets

is postivie, namely, λ, in which case both methods perform similarly) since it needs
to take into account other terms in the objective function (namely, orthogonality and
smoothness over time, which are more involved constraints than sparsity). We observe
that OJSNMF outperforms NMFKL-OS in terms of relative error.

Table 1 reports the average results of the quality measures detailed in Sect. 4.3
for the 100 synthetic data sets, along with the standard deviations. The following
observations can be made:

– When used to match the parameters of MU and sparse-NMF, OJSNMF performs
similarly as these methods. Note that MU and sparse-NMF provide very similar
results: to obtain sparser solutions, the parameter λ should be chosen larger. OJS-
NMF only has a slightly larger error (+0.01%) because it converges slightly slower
(see Fig. 4) as it uses a square root in the multiplicative updates. (The square root
could be removed but we would loose the convergence result of Theorem 1 for the
general case.) This illustrates the flexibility of OJSNMF.

– When compared to NMFOS-KL, OJSNMF has much smaller error (0.36% vs.
1.47%) but larger orthogonality (3.73% vs. 0%). This is explained in part by the
fact that these two algorithms are not using the same model: NMFOS-KL uses
K L(I , W �W ) and OJSNMF uses ||Ir − W �W ||F .

– OJSNMF with all the parameters positive (the ninth row of Table 1) is able to
identify solutions with small error (0.79% in average) while all the penalty terms
have good values, with 81.62% sparsity, 2.05% coherence between the columns
of the Wt s and 4.87% orthogonality. In particular, it has quality measures close
to the other algorithms, while being able to produce very similar Wt s (average
distance between slices of 2.05%), while the other approaches completely fail to
do so (> 100% relative error) except MU-unfolding. This illustrates the fact that
NMF is highly non-unique (Gillis et al. 2012) and that using prior information
from domain expert is a key aspect when using NMF.

– When compared to MU-unfolding, OJSNMF has the same error, but has less
orthogonal slices (recall we chose γ = 0 to compare with MU-unfolding). This
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Table 1 Average and standard deviation of the different quality measures in percent among 100 data sets

Methods Error Sparsity Hoyer Sparsity less
10−3

∥∥W t −Wt
∥∥

F∥∥W t
∥∥

F

∥∥∥W�
t Wt −I7

∥∥∥
F√

r

MU 0.01± 0.01 58.32±2.18 39.66±4.49 134.56±7.70 43.26±4.71

OJSNMF (λ = 0,
α = γ = 10−5)

0.02±0.01 56.95±2.11 36.91±4.18 133.59±7.79 47.34±4.21

NMFOS-KL
(γ = 110.13)

1.47±0.08 71.18±0.35 85.71±1.43 · 10−13 143.47±2.19 10−13(1 ± 9 · 10−2)

OJSNMF
(λ = α = 0,
γ = 110.13)

0.36±0.08 69.30±0.30 78.50±0.76 142.29±5.22 3.73±0.58

Sparse-NMF
(λ = 2.31)

0.01±0.01 58.37±2.18 39.74± 4.34 134.03±7.74 100.00±0.0003

OJSNMF
(λ = 2.31,
α = γ = 10−5)

0.02±0.01 56.93±1.97 37.07±4.01 133.11±7.47 99.99±0.001

MU unfolding 0.01± 0.01 66.81±1.64 36.26±11.38 0 20.21±7.99

OJSNMF (λ = 0,
α = 203.87,
γ = 0)

0.01±0.01 63.03±3.86 35.55±8.99 5.53±6.48 88.91±6.37

OJSNMF
(λ = 2.31,
α = 203.87,
γ = 110.13)

0.79±0.23 69.82±0.60 81.62±1.01 2.05±0.38 4.87±0.35

illustrates the fact that NMF is a highly ill-posed problem with non-unique solu-
tions.

4.5 Real data set

In accordance to some previous studies about 3D microarrays (Li and Ngom 2011;
Baranzini et al. 2004),we analyzed the data set provided in (Baranzini et al. 2004)2. The
data set collects gene expression levels about patients affected by multiple-sclerosis
(MS) disease and treated during different time steps with the protein Interferon beta
(IFNβ). This kind of biological experiment was performed to clarify the medical
responses, atmolecular levels, to IFNβ treatments. The real data set was used to predict
good or bad responders to these treatments (Li and Ngom 2011). Originally, the data
set combined information about 73 genes, 53 patients and 7 time points (consisting of
a first treatment, a quarterly treatment during the first year and two more treatments
during last therapy year). However, since the data set contained somemissing values in
correspondence to the expression levels of somegenes andpatients,wepre-processed it
to obtain a final complete data set, removing the associated rows and columns. The final

2 The data set is available online as a supplementary material of https://doi.org/10.1371/journal.pbio.
0030002.sd001.
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Table 2 Quality measures in percent for different values of the factorization rank

Rank and parameters Error Sparsity Hoyer Sparsity less 10−3
∥∥W t −Wt

∥∥
F∥∥W t

∥∥
F

∥∥∥W�
t Wt −I7

∥∥∥
F√

r

r = 2 0.91 86.44 45.06 0.78 1.27

λ = 1.27,
α = 115.20,
γ = 103.54

r = 3 0.69 93.83 64.29 0.61 1.47

λ = 1.18,
α = 97.66,
γ = 59.15

r = 4 0.59 94.08 73.35 0.51 1.79

λ = 1.19,
α = 79.14,
γ = 48.08

r = 5 0.67 95.26 78.24 0.66 1.51

λ = 1.24,
α = 68.43,
γ = 56.60

r = 6 0.65 96.01 81.96 0.64 1.42

λ = 1.29,
α = 58.47,
γ = 59.31

tensor χ ∈ R+52×27×7 collects gene expression levels of 52 genes, measured among
27 patients during a treatment of 7 time steps. For this experiment, instead of using
randomlygenerated initialmatrices,we initialize the algorithmsusing the non-negative
double singular value decomposition (NNSVD) (Casalino et al. 2014; Boutsidis and
Gallopoulos 2008) which provides better results than random initializations.

Let us observe the variations in the quality measures for various values of the
factorization rank (r = 2, . . . , 6); see Table 2.

We observe that the largest gap in the quality measures is from r = 2 to r = 3 (in
particular the error and the sparsity), while they remain closer for r ≥ 3. Interestingly,
this value of r matches the value chosen in (Li and Ngom 2011). Hence, we will
choose r = 3 to compare OJSNMF with the other NMF algorithms as in the previous
section; see Table 3 for the numerical results.

We observe the following:

– As for the synthetic data set, MU, sparse-NMF and OJSNMFwith the correspond-
ing parameters behave very similarly. This is because the solution ofMU is already
rather sparse, and the penalty parameter λ is not large enough to obtain sparser
solutions with sparse-NMF.

– NMFOS-KL andOJSNMFprovide very similar results, as opposed to the synthetic
data set. NMFOS-KL has only slightly larger orthogonality and OJSNMF slightly
better coherence between the slices.

123

Author's personal copy



Orthogonal joint sparse NMF for microarray data analysis

Table 3 Quality measures in percent for the real data set from (Li and Ngom 2011)

Method Error Sparsity Hoyer Sparsity less 10−3
∥∥W t −Wt

∥∥
F∥∥W t

∥∥
F

∥∥∥W�
t Wt −I7

∥∥∥
F√

r

MU 0.21 72.78 10.53 56.99 87.04

OJSNMF (λ = 0,
α = γ = 10−5)

0.21 72.50 10.53 54.86 79.24

NMFOS-KL
(γ = 59.15)

0.39 77.10 66.58 69.65 0.001

OJSNMF
(λ = α = 0,
γ = 59.15)

0.39 73.20 57.05 61.09 0.92

Sparse-NMF
(λ = 1.18)

0.21 72.70 10.62 59.76 100.00

OJSNMF
(λ = 1.18,
α = γ = 10−5)

0.21 72.52 10.35 58.09 100.00

MU unfolding 0.25 73.12 20.51 0 67.72

OJSNMF (λ = 0,
α = 97.66,
γ = 0)

0.24 73.70 19.04 0.74 58.00

OJSNMF
(λ = 1.18,
α = 97.66,
γ = 59.15)

0.69 93.83 64.29 0.61 1.47

– When compared to the MU-unfolding, OJSNMF gives very similar results
although in this case, it generated a solution with smaller error (0.24% vs. 0.25%)
while having the slices almost identical (0.75%), and having also a better orthog-
onality (58% vs. 67.72%). This shows that introducing flexibility in the model is
important as there are in practice evolution of the basis matrix Wt s over time.

– OJSNMF with all parameters activated presents good results respecting all the
constraints in the model while the error is not significantly increased (note that the
sparsity ismuch larger than for the other algorithms). Figure 5 displays the heatmap
representation of the concatenated Wt s, which shows the sparsity, orthogonality
and similar patterns of the different slices.

Interpretation of the OJSNMF metagenes
As explained in Sect. 2.1 a metagene codifies the weights or importance of each

gene (row element) in the analyzed process (Brunet et al. 2004). To extract relevant
genes within metagenes, different techniques have been developed when NMF is
applied on 2D microarrays. The simplest approach sets a priori the number of genes
within a metagene and extracts the corresponding number of elements with the largest
magnitude (Crescenzi and Giuliani 2001). Another strategy is proposed in (Kim and
Tidor 2003) and identifies features as meaningful when the corresponding coefficients
in the basis matrix exceed a fixed threshold value. These mechanisms can be also
adapted to analyze results obtained by OJSNMF, since it has the ability to construct
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Fig. 5 Heatmap of the Wt slices for t = 1, . . . , 7 concatenated. As reported in Table 3, the slices Wt s
are very similar, with an average relative difference between slices of 0.61%. This explains why is it not
possible to observe with the naked eye any significant difference between the different slices on this figure

similar slices Wt for t = 1, . . . , T . Figure 5 displays the metagenes obtained by
OJSNMF when applied to our numerical example and illustrates this similarity.

In this paper, since no preliminary knowledge on the dataset is available, we adopt
a simple threshold strategy to decide whether a gene belongs or not to a metagene.
Particularly, when the value in the column of the Wt s is at least 5% of the largest
value in that column, the gene is extracted. The first metagene contains only one
gene (MIP1a gene), the second metagene contains two genes (RANTES and CD86),
and the third metagene contains three genes (Tbet, CD69 and IRF5). All these gene
are widley present in the literature panorama of the multiple-sclerosis disease studies
(Boven et al. 2000; Gade-Andavolu et al. 2004; Boivin et al. 2015; Racke et al. 2014;
Vandenbroeck et al. 2011; Marckmann et al. 2004; Wiesemann et al. 2008; Huang
et al. 2001).

5 Conclusion and future works

In this paper, we have proposed a new model, dubbed orthogonal joint sparse NMF
(OJSNMF), to extract relevant information from 3D microarrays containing the time
evolution of a 2D microarray. Our model is based on the KL divergence and is very
flexible as it can incorporate three penalties: sparsity, orthogonality and coherence
between the basis matrices of different time steps. We have developed multiplicative
updates for OJSNMF and proved they monotonically decrease the objective func-
tion. We have shown that our approach competes favorably with state-of-the-art NMF
algorithms based on the KL divergence on both synthetic and real data sets.

Further work The analysis of microarray data requires a constant dialogue with
the domain experts to provide a biological interpretation of the mathematical models.
For this reason, although the construction of our proposed model was supervised
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from experts of the domain, OJSNMF still requires to be validated in real conditions.
Another interesting aspect to be further investigated is the parameter choice. In fact,
although in the experimental section we adopted a simple heuristic for the selection
of the parameters, others options could be considered (e.g., tuning the parameters in
order to achieve some desired value of the penalty terms).

Finally, it would be interesting to apply our model in other situations. For example,
it would be useful to analyse hyperspectral images of a scene taken at different time
points. In a few words, in that model, there will be one abundance matrix for each
hyperspectral image. Each column of these abundance matrices record the abundances
of a material in the pixels of the image. These matrices, correspond to the Wt ’s in our
model, will be sparse, close to being orthogonal (most pixels in such images contain
mosty onematerial) and smooth over time since thematerials present in a scene usually
evolve smoothly over time; see, e.g., (Veganzones et al. 2016) for more details on this
application and an example on the evolution of the snow coverage in the French Alps
during the snow season.
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